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Abstract. The velocity increments statistic in various turbulent flows is analysed through the hypothesis
that different scales are linked by a multiplicative process, of which multiplier is infinitely divisible. This
generalisation of the Kolmogorov-Obukhov theory is compatible with the finite Reynolds number value
of real flows, thus ensuring safe extrapolation to the infinite Reynolds limit. It exhibits a β estimator
universally depending on the Reynolds number of the flow, with the same law either for Direct Numerical
Simulations or experiments, both for transverse and longitudinal increments. As an application of this
result, the inverse dependence Rλ = f(β) is used to define an unbiased Rλ value for a Large Eddy
Simulation from the resolved scales velocity statistics. However, the exact shape of the multiplicative
process, though independent of the Reynolds number for a given experimental setup, is found to depend
significantly on this setup and on the nature of the increment, longitudinal or transverse. The asymmetry
of longitudinal velocity increments probability density functions exhibits similarly a dependence with the
experimental setup, but also systematically depends on the Reynolds number.

PACS. 47.27.-i Turbulent flows, convection, and heat transfer – 47.27.Gs Isotropic turbulence; homoge-
neous turbulence – 47.27.Jv High-Reynolds-number turbulence

1 Introduction

In order to improve the modelling of turbulent flows, a
better knowledge of the small scale intermittency is still
needed. The main feature of the intermittency is that the
shape of the probability density functions (here after pdf)
of the velocity increments δu(r) at a given scale r are
not the same at each scale, as assumed in [1]. It roughly
evolves from a Gaussian shape near the integral scale L to
a stretched exponential shape near the Kolmogorov scale
η (see Fig. 1). Several intermittency models have been
proposed to take into account this effect (see for instance
[2–4]). All these models assume a total scale invariance for
the velocity field. Actually, as revealed by the behaviour
of the velocity structure function there is no scale invari-
ance in the finite Reynolds number flows [5]. However,
the velocity field has some kind of self similarity proper-
ties [6,7] that the Extented Self Similarity (hereafter ESS)
technique has revealed [8]. A few models have recently
been proposed which predict that all the scales of the flow
dynamically “feel” the viscosity, whatever the Reynolds
number can be (the variational approach [9], or the mul-
tifractal intermediate dissipation range [10]).

In this context, it is of prime importance to distin-
guish between models and analysis. The analysis, by the
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Fig. 1. Normalised pdfs of transverse velocity increments in
a turbulent air jet at Rλ = 695; r ∼ η (dotted line); r ∼ L
shifted of three decades (long dashed line); intermediate scales
(solid line).

measured quantities and the way they are defined, not
only allows to verify the predictions of the various mod-
els, but also must check, as far as possible, the underlying
hypothesis of these models.
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Therefore, a technic of analysis which does not a priori
assume neither scale invariance nor ESS is necessary.
This is the case for the analysis introduced by Castaing
et al. [11] which has later yielded to the cumulant analy-
sis (cf. [12–16] for the generalized wavelet version). This is
also the case of the recent Markovian approach of Friedrich
and Peinke [17].

In a previous paper, [15], the cumulant analysis, used
in this paper and explained in Section 2, has revealed a de-
pendence of an intermittency statistical estimator (defined
as the intermittency exponent β) on the Reynolds num-
ber of the flow, only for longitudinal velocity increments
obtained from physical experiments. In this experimen-
tal paper, this data analysis is generalized both to trans-
verse velocity increments and to data obtained by Jiménez
et al. [18], from direct numerical simulations (DNS).

The purpose is not, a priori, to verify the theoretical
predictions of the variational model [11], but to bring in
evidence some measurable parameters which characterise
scale intermittency and to discuss their physical signif-
icance and their possible universality in relation to the
Reynolds number and the flow type.

Section 3 describes the evolution of the intermittency
along the scales for several types of flows obtained from
physical and numerical experimental data. Section 4 gives
the behaviour of the main characteristic parameters of the
intermittency versus the Reynolds number. The asymme-
try of the longitudinal pdfs is discussed and analysed in
Section 5. In Section 6, we apply this analysis to estimate
the Taylor Reynolds number (hereafter, noted Rλ) of a
flow calculated with a LES.

2 Background of the analysis

2.1 Basic hypotheses

The method introduced in [11] is based on two main hy-
potheses.

The first hypothesis is to assume that the velocity in-
crements pdf at a scale r, noted Pr(δu), can be expressed
as a superposition of rescaled velocity increments pdf at
a scale l, for any r and l, with l larger than r. That is to
say, it is possible to define a positive independent multi-
plier random variable αrl such as:

δu(r) = αrl δu(l) ∀ r, l with r ≤ l.

This can also be written in terms of pdf:

Pr(δu) =
∫
Grl(lnα)

1
α
Pl

(
δu

α

)
d lnα (1)

where Grl is the pdf of the logarithm of the αrl multiplier.
Then, this analysis only considers the symmetrical part

of the velocity increments. This permits to take the loga-
rithm of δu and to transform (1) in a convolution product:

(1) ⇒ P̄r(ln |δu|) =
∫
Grl(lnα)P̄l(ln |δu| − lnα) d lnα

⇔ P̄r = Grl ⊗ P̄l (2)

where P̄r is the pdf of ln(|δu(r)|).

Before going farther let us note that this point of
view is closely related to the recent work of Friedrich and
Peinke [17] where the evolution of Pr along the scale is
given by a Fokker Planck equation. The connection be-
tween the two approaches is discussed in [14] and in the
appendix.

Since the previous relation is true whatever the scales
r and l are, we have:

Grl = Grrn−1 ⊗ ...⊗Gr1l with r ≤ rn−1 ≤ ... ≤ r1 ≤ l.

The second hypothesis, which is the strongest one, as-
sumes that the ri can be chosen so that all the Griri−1 are
the same distribution H. In this case, we have:

Grl = H⊗nrl (3)

where nrl is the number of steps to go from l to r in the
cascade, with arbitrary steps H.

At infinite Rλ, this assumption is easy to prove because
a total scale invariance is ensured [19]. Indeed the pdf Grl
can then only depend on the ratio r

l and not independently
on r and l. It is then sufficient to take

ri
ri−1

=
rj
rj−1

=
(r
l

) 1
n

to ensure that, for any i and j,

Griri−1 = Grjrj−1 .

In finite Rλ case, we will see in Section 3.2 that this hy-
pothesis is equivalent to the ESS that has been experi-
mentally verified [20].

2.2 Cumulant expansion of the velocity structure
functions

Assuming that the G distribution is defined, the prob-
lem now consists in determining it. From an experimental
point of view, we can measure the structure functions of
the velocity increments, 〈|δu(r)|p〉, which are also directly
linked to the cumulant generating function ψrl of the Grl
distribution [20].
By definition

ln〈αprl〉 = ln
〈|δu(r)|p〉
〈|δu(l)|p〉

and
ψrl(p) = ln〈αprl〉

= C1rlp+ C2rl
p2

2 + ...+ Cirl
pi

i! + ...

Experimentally, the first cumulants are estimated with
a polynomial fit of ψrl(p). In Figure 2, we have plot-
ted the four first cumulants calculated from a fifth or-
der fit of the longitudinal increments measured in the air
jet (Rλ = 695). We clearly observe that there is an or-
der of magnitude between each cumulant. Moreover, the
signal to noise ratio decreases with the order p, so that
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Fig. 2. Typical behaviour of the three first cumulants versus
r/η in the air jet (Rλ = 695), for the longitudinal velocity
increment.

the fourth one is downed in the noise, leading to cumu-
lants of order p > 3 negligible.

The three first cumulants of ψrl(p) are, by definition,
the three first centered moments of the Grl distribution:

C1rl = 〈lnαrl〉
C2rl = 〈(lnαrl − 〈lnαrl〉)2〉
C3rl = 〈(lnαrl − 〈lnαrl〉)3〉

C1rl represents the mean of ln(αrl) and is linked to the
ratio ln(σr/σl) (where σr = (〈δu2

r〉)1/2 Since αr is less than
1, then C1rl is negative. C2rl is the variance of ln(αr) and
is positive because velocity pdfs are flatter and flatter as
r decreases from l to η. C3rl is the third centered moment
of ln(αr), it is negative and measures the deviation of Gr
with the log-normal distribution.

Figure 2 shows that the absolute value of the third cu-
mulant is small (about 10−2), and in practice, these air
jet data are typical of all our measurements. Therefore,
all the cumulants presented in Section 3 have been esti-
mated by a second order polynomial fit of Frl(p), defined
as Frl(p) = ψrl(p)/p, in such a way, a perfect linear be-
haviour of Frl would mean a log-normal distribution for
the multiplier αrl. We observed that this fit, which gives
Cprl = 0 for p > 3, leads to C3rl more proportionnal to
C1rl and C2rl (see Fig. 4) than the fifth order polynomial
fit does in Figure 2.

It is observed that, for scales larger than a typical scale,
hereafter called l0, close to the integral scaleL, the velocity
increment pdf assumes a constant shape. Let us take it
as the definition of l0. The consistency of this definition
will be shown later (end of Sect. 3.2). The experimental
definition of the cumulants Cirl thus gives:

Cirl = Cirlo ∀l ≥ l0.

It is natural to take l0 as the reference scale in our data
anlysis. In fact, experimentally, any scale l greater than l0
gives the same cumulant values.

Hereafter, we denote by r the current scale ranging
from η to l0 and choose the reference scale l greater or
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Fig. 3. Evolution of the cumulant values versus the data size.
−C1 (◦), 10× C2 (N), −100× C3 (∗).

equal than l0, so l is no longer considered as a parameter,
and we shall note Cirl = Ci(r).

Since the cumulants Ci(r) are the key quantities, we
have checked their statistical convergences. Figure 3 dis-
plays the evolution of the cumulants values with the size of
the data file (same flow as in Fig. 2). The statistical con-
vergence is clearly reached, what is not surprising since
the Ci values are obtained from velocity moments of or-
der p ranging from p = 0.6 to p = 6.6. In particular, we
observed that the convergence required by C2 is nearly
the same as that needed for the flatness factor based on
the same scale. The above check of convergence has been
performed on every flow.

2.3 The variational approach: a refinement
of the KO62 model

In [1], the shape of the velocity increment pdfs is assumed
to be the same at each scale. So, the multiplier αr is no
longer a random variable but a constant which value is
given by the Kolmogorov law. Apart from the first one, all
the cumulants are equal to zero, so [1] can be expressed as:

C1(r) = ln
|δu(r)|
|δu(l0)| =

1
3

ln
(
r

l0

)
Ci(r) ≡ 0 ∀ i > 1.

The model proposed in [2,3] is an intermittency model
which assumes a lognormal distribution for the multiplier
α. So, all the cumulants beyond the second one are sup-
posed to be equal to zero. Moreover, as in [1], a total scale
invariance is assumed in this model and the scale l0 is
the only one taken as the characteristic scale of the flow.
Therefore, it predicts a logarithmic law for the cumulant
behaviour which can be true only in the limit of infinite
Rλ and corresponds to:

C1(r)∝C2(r) =−µi ln
(
r

l0

)
with µi=const. i=1, 2 (4)

Ci(r) ≡ 0 ∀ i > 2. (5)
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On the contrary, the variational model takes into account
the effect of the viscosity by introducing both the scale
l0 and the Kolmogorov scale η as characteristic scales. It
predicts a power law behaviour instead of a logarithmic
one and it induces a dependence on the ratio l0/η for the
cumulants. This means that this model predicts a depen-
dence on the Reynolds number of the flow. The variational
model predictions are [9,14]:

DCi(r)=
∂Ci(r)
∂ ln(r)

∝r−β ⇔ Ci(r)=ki

((
l0
r

)β
−1

)
(6)

and, β ∝ 1
ln(l0/η)

⇔ 1
β

=
1
β0

ln
(
Rλ
R∗

)
(7)

where β0, ki and R∗ are constants. Hereafter, the deriva-
tive ∂/∂ ln(r) will be noted D.

2.4 ESS and proportionality of cumulants

ESS [8] can be tested in two different ways, which corre-
spond to Figures 4a and b. Both are verifying the prop-
erty (3). However, the range of validity limits are clearer
in Figure 4a when comparing the variations in the range
to out of the range.

On one hand, (3) is equivalent to the proportionality
of the cumulants along the scales [7]:

(3)⇔ Ci(r) = Ci[Gr] = nrCi[H] ∀ i

⇔ Ci[Gr]
Cj [Gr]

= Aij ∀ i, j (8)

where Ci[Gr] is the ith cumulant of the considered distri-
bution Gr and Aij is not dependent on r.

Figure 4a shows typical behaviour of the ratios
−C1(r)/C2(r) and −C2(r)/C3(r) versus C2(r) obtained
with experimental data. These ratios are roughly constant,
in comparison with the rapid departure from this constant
value when going out of the range 0.4l0 − 6η.
On the other hand, from the equation (3), one also derives:

ln〈αpr〉 = nr f(p)⇔ 〈|δu(r)|p〉 = Ap 〈|δu(r)|3〉ζ′p

which is, by definition, the characteristic property of ESS,
ζ′p = f(p)/f(3) being the scaling exponent of the absolute
value velocity structure function of order p versus the third
order one.

We observe, in Figure 4b, that it is very well verified by
the same data in the same range of scales as for the pro-
portionality of the cumulants. The lower limit (namely 6η)
is in good agreement with the smallest scale (5η) reached
with the generalization of the ESS [21]. The comparison
between Figures 4a and 4b shows that neither of these
two plots yields to clear edges of a plateau, even though
the transition to the dissipation range is well seen on the
former. Besides, Figure 4a displays raw data whereas, in
Figure 4b, the quality of the demonstration depends on
the adjustable parameters f(2) and f(4).
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Fig. 4. (a) Behaviour of the cumulants ratios versus C2(r) for
the turbulent air jet (Rλ = 695) in the longitudinal increments
case; −C1(r)/C2(r) (◦); −C2(r)/C3(r) (•). (b) Behaviour of

the compensated quantity A4
A2

〈|δu(r)|2〉f(4)

〈|δu(r)|4〉f(2) versus 〈|δu(r)|2〉 for

the tubulent air jet (Rλ = 695) in the longitudinal increments
case.

This example, which is typical of all our experimental
data, justifies the infinite divisibility hypothesis. It also
shows that the proportionality of the cumulants (Fig. 4a)
is experimentally a more stringent criterium than the self
similarity of moments (Fig. 4b), even if they are formally
equivalent.

3 Experimental results

3.1 Physical and numerical experiments

The measurements were made in four different turbulent
flows. They are a cryogenic axisymmetric helium gas jet,
and three air flows: an axisymmetric jet, a grid turbulence
and the large wind tunnel of ONERA at Modane. The
characteristics of these flows are presented in Table 1. In
the helium jet, velocity measurements were obtained using
a home made hot wire constant temperature anemome-
ter [22]. Its unused characteristic is that the length
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Table 1. Characteristics of the turbulent flows: U is the
mean velocity, σu its r.m.s value, λ and η respectively
the Taylor and the Kolmogorov length scales calculated as,

λ2 = U2 σ2
u/〈(du/dt)2〉 and η = (ν2 U2 / 15〈(du/dt)2〉)

1
4 ,

fs and fk are respectively the sampling and the Kolmogorov
frequencies.

Rλ U σu λ η fs fk

m s−1 m s−1 cm mm kHz kHz

grid turbulence 144 19.6 0.64 0.35 0.15 45 22.5

air jet 350 1.68 0.44 1.28 0.33 45 0.80

453 2.75 0.67 1.02 0.24 45 1.79

695 6.29 1.55 0.67 0.13 45 7.57

Modane 2542 20.74 1.58 3.21 0.26 25 10.19

channel 3400 15.77 2.38 2.70 0.24 25 10.63

helium jet 352 0.35 0.075 0.033 9×10−3 23 6.5

703 1.6 0.3 0.0175 3.4×10−3 272 75

985 3.1 0.65 0.012 2×10−3 368 250

of the sensitive part is a few times the diameter of the
wire (10 µm versus 1.5 µm) giving a poor directivity to
the measures [23]. For the air flows, velocity measurements
were obtained with DISA 55M01 constant temperature
system with Wollaston wire (3 µm diameter (dw) and
0.35 mm length (lw)) for all the air flows. In order to
reduce averaging effects to a minimum, the ratio of wire
length to Kolmogorov scale (lw/η) was kept as small as
possible (1 < lw/η < 3) and this, at the risk of difficulties
which could arise when lw/dw < 200. However, the Wol-
laston wire, with lw/dw ' 120, gave consistent results with
previous measurements made with a wire of lw/dw > 200
while the measurement location is far from any bound-
ary [24]. In the case of the ONERA wind tunnel, a cold
wire (home built constant current anemometer) was also
used to measure temperature fluctuations simultaneously
with hot wire signals in order to separate velocity fluctu-
ations (for details see [25]).

Longitudinal velocity increments δu‖(r) were obtained
with the measurement of the streamwise velocity compo-
nent u by using a single hot wire. The time-space con-
version has been done by using the Taylor hypothesis.
We have used a particular time-space method, namely,
δx = −u(t)δt, where u(t) is the instantaneous streamwise
velocity component, instead of a constant mean velocity
U as it is usually done. All the results presented below
were obtained by using this particular time-space conver-
sion, which is detailed in [15,26]. The best spatial and
temporal resolution of the longitudinal increments is at a
range of twice or three times the Kolmogorov scale η, thus
missing a significant part of the dissipation range.

Transverse velocity increments δu⊥(r) were performed
in the jet and in the grid by measuring the transverse ve-
locity component v. The use of time-space conversion per-
mits to obtain the transverse increments of the transverse
velocity component δv(x). The resolution of the transverse

Table 2. Parameters of the numerical simulations: N is the
size of the simulations, t/T is the total run time in eddy
turnover units. The energy dissipation rate ε has been adjusted
to achieve the numerical resolution kmaxη = 2.

Rλ N εL/σu
′3 t/T L/η

63 128 0.80 9.3 52

142 384 0.73 5.9 162.06

168 512 0.69 5.9 197.34

velocity gradients is limited either by the X array size or
the signal to noise ratio.

Each file contains 70 × 106 samples which are suffi-
cient to reach a reasonable statistical convergence of the
statistical moments 〈[δu‖,⊥(r)]p〉 until the order p ' 6.

The DNS data kindly given by Jiménez, have been
carried out in [27]. These DNS are essentially the same
as in [18]. Their main characteristics are summarized in
Table 2. Both longitudinal and transverse velocity incre-
ments have been calculated at twelve different scales log-
arithmically distributed over the whole scale range. Pdf
have been calculated with about 400× 106 samples.

3.2 Relative behaviour of cumulants

We are able to characterize the Grl0 (hereafter Gr) dis-
tribution at each scale r by its cumulants. We shall first
verify again the infinite divisibility of the Gr distributions
in a slightly different way than in Section 2. Then, the
universality of the result, the viscous cut off scale and the
definition of the scale l0 will be discussed.

Figure 5 shows the mutual behaviour of the C1r and
C2r cumulants obtained from longitudinal velocity incre-
ments measured both in the helium jet, and in air ex-
periments. The results appear relatively grouped, roughly
linear, up to a plateau (not reached in the Modane chan-
nel flow) which can be interpreted as the velocity gradient
pdf shape.

In the case of the Modane data file (Rλ = 2542),
we discovered a stationary problem in the velocity sig-
nal due to brief and periodical openings of the channel air
entries which have caused strong inhomogeneities in the
mean flow and spoiled the whole statistics. The experi-
mental data shown in Figure 5 have been obtained from
1.5 × 107 points corresponding to the longest signal du-
ration between two openings. Note that the convergence
study we performed (Fig. 3) ensures the validity of the re-
sults obtained with such a partial sample. Even if we have
observed that the cumulants are sensitive to fluctuating
conditions of homogeneity and isotropy, we are not able
to quantify this influence.

At small scale, the intersection of the cascade range lin-
ear fit with the plateau which defines the viscous cut off
scale, is rather clean-cut compared to the progressive tran-
sition from the inertial range to the viscous one. Indeed,
in the helium experiments, we can study the behaviour of
this viscous cut off scale with the Reynolds number. It goes
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Fig. 5. Behaviour of C2 versus C1; (a) for different setups:
grid (∗), air jet (◦), helium jet (�), Modane channel (+); (b)
only in the air jet (cf. Tab. 1).

as R−3/2
λ as η does, up to the Rλ = 703 run. For larger

Rλ, the viscous cut off is at a constant value, showing the
limitation of the home made anemometer used in the he-
lium jet. For Rλ ≤ 703, this scale corresponds to 3.3η. It
is interesting to notice that the value of D(ln |δu3|) at this
scale is approximately 2.6, that is closer to the dissipative
value 3 than to the inertial value 1.

Let us now comment on the universality of the slope
dC2/dC1. We think that the difference between the slopes
shown in Figure 5a is significant. Indeed, for a given exper-
iment (Fig. 5b) the slopes are equal for different Reynolds
numbers, even with several years between measurements.
On the contrary, different experiments of the same type,
in particular for the two jets, yield to different slopes
(Fig. 5a). This is why, we do not give any universal value
for this slope; note, however, that values we found are
around dC2/dC1 = 0.08, in rough agreement with the
wavelet analysis of [28].

These results are somewhat different from those ob-
tained in [21]. Figure 5a suggests that the ESS is verified
in all the types of flow including mean sheared flows, on
the contrary, Benzi et al. [21] did not find any ESS for flows
enclosing a shear. Moreover, the different slopes observed,
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Fig. 6. Behaviour of l0/η versus Rλ for longitudinal incre-

ments; measured values (◦), dotted line: l0/η ' R3/2
λ /8.

in Figure 5a, is contrary to the universality of scaling ex-
ponents obtained by these authors. Indeed, we observe a
non dependency on the Reynolds number (Fig. 5b), but
only for a given flow.

A slope independent on the Reynolds number allows to
safely extrapolate towards infinity Reynolds number limit
and to define the scaling exponents:

ζ′p = f(p) ' p

3

(
C1 + C2p/2
C1 + 3C2/2

)
·

Different slopes depending on experimental setups mean
different ζ′p which would not be universal. This result
seems contradictory to the universality of velocity scaling
exponents which have been measured in a lot of experi-
ments. In fact, the differences induced between various ex-
periments are of the order of the error bars given on usual
compilations (see, for instance, [29]). This imprecision on
ζ′p thus would not be due to a lack of accuracy of data but
would be intrinsic to the diversity of experimental setups.

Finally, let us remark that the proportionality of C2

versus C1 down to the smallest values gives all its meaning
to the definition previously proposed for the large scale
l0 (Sect. 2.2). The scale where C2 reaches zero is clearly
the same as the one where C1 does. Figure 6 shows that
l0/η scales as R3/2

λ as for the classical integral scale L. In
all air experiments (grid, jet and Modane channel), the
ratio l0/L has been found constant and nearly equal to
3, (the integral scale L being estimated with the velocity
correlation curve).

Concerning the third cumulant, our experimental data
suggest that the C3 values are very small (cf. Fig. 2),
nevertheless, we checked its proportionality with C2 and
C1, at least, in the flows where the signal to noise ratio
was large enough (see [15,22]).
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3.3 Estimator β

Since the cumulants are roughly proportional at any scale
ranging from 0.4l0 to 6η, their behaviour can be examined
by only studying the first one C1.

In Section 2.3, we have seen that the lognormal model
and the variational approach give two different predictions
for the dependence of C1 versus r. Figure 2 clearly shows
that the former prediction (5) is not verified by experi-
mental data. The latter one is expressed by (6) and can
be tested in two different ways:

– A soft way is to consider it as a parameterization of
finite Reynolds number effects and of the resulting de-
parture from the power law dependence of velocity mo-
ments (ln(r) behaviour for C1). The question is then
to look if an equation like (6) can reasonably repro-
duce the experimental C1 behaviour. This is the spirit
of the analysis of [28]. They showed that a power law
behaviour for C1 gives a much better agreement with
experimental data than a ln(r) behaviour. As shown
in Figure 7, our data are also very well fitted by (6)
where additive constant k1 and the exponent β are ad-
justable parameters, experimentally estimated with a
least squares method.

– A stricter point of view is to look if, among all the pos-
sible departures from the ln(r) behaviour, (6) is a good
one on the whole inertial range. This should allow, in-
ter alia, to determine unambiguously the parameters
β and k1.

As we have:

(6) ⇒ DCi =
∂Ci
∂ ln(r)

= −β(Ci + ki)

a systematic test is to plot DC1 versus C1 as shown in
Figure 8a.

For small Rλ (Rλ < 400) the linear fit appears as a
good one, in many cases within the experimental accuracy.
It expresses that the influence of viscosity goes up to the
largest scale.

For large Reynolds numbers, deviations from linear
behaviour are systematically out of the experimental er-
ror bars. The range of scales influenced by the viscosity
no more extends up to the integral scale. For these large
Reynolds numbers, the prediction (6) appears as a simpli-
fication which no longer captures the detailed behaviour of
the cumulant C1. In the present state of the art, however
we prefer to take a conservative point of view, closer to the
soft way previously mentioned. The reason is that an ex-
perimental derivative is a delicate procedure which could
enhance unexpected artefacts. As we have seen previously
(Fig. 7) a single parameter β well integrates the continu-
ous variation of DC1, without any real plateau, from large
to small scales.

Again we do not pretend that Figure 8 justifies the
law proposed in equation (6). On the contrary, the fit of
the data by a straight line aims at determining objectively
the best global parameter β. We have thus to use a wide
range for this fit which we systematically choose between
0.4l0 and 15η.
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Since the cumulants are proportional, it is also pos-
sible to estimate the β exponent directly from the |δur|
moments:

ψr(p) =

((
l0
r

)β
−1

)(
k1p+k2

p2

2
+...+ki

pi

i!
+...
)

⇒D ln〈|δur|p〉 =
∂ ln〈|δur|p〉
∂ ln(r)

= −β(ln〈|δur|p〉+κp)

with, κp =
(
k1p+k2

p2

2
+...+ki

pi

i!
+...
)
−ln〈|δul0 |p〉.

Figure 8b shows the typical behaviour of D ln〈|δur|p〉
versus ln〈|δur|p〉, in the case of p = 3, obtained from the
helium jet data.

We observe a behaviour similar to DC1(C1). We have
verified that the shape of the D ln |δur|p does not depend
on p (not represented here) according to the previous re-
lation. In each case (Fig. 8), we only plotted the range
where the cumulants are proportional, namely, 6η− 0.4l0,
that is all the range where the multiplicative cascade is
active, but, as said above, the average slope β has only
been estimated on the range 15η−0.4l0.

Figure 7 gathers the behaviour of the first compen-
sated cumulant Cc1 for several flows, defined as: Cci(r) =
(Cir/ki+1). Scaling power laws are observed from the end
of the dissipation range to the largest scale l0 in agreement
with the variational prediction (6).

This figure also gives an idea of the β exponent be-
haviour with the Reynolds number. As Rλ increases, β
decreases and tends to zero in the limit of infinite Reynolds
number. In this case, the variational model is equivalent
to a ln(r) behaviour that is the so called third hypothesis
of the Kolmogorov-Obukhov 62 model [2,3]. On the op-
posite, at small Rλ, β increases and tends to infinity at
Rλ of order 1. Since β is the average rate of variation of
the cumulant along the scales, it can be interpreted as the
“speed” at which the pdf changes from a Gaussian shape
to an exponential one along the scales. In other words, it is
a global statistical estimator which means, in average, the
“acceleration” of the intermittency cascade process along
the scales.

3.4 Transverse velocity increments

Before going into the same analysis for transverse incre-
ments as for the longitudinal one, let us refer to a contro-
versy about comparison of their intermittency based on
the structure function [30,31]. In Figure 9, is displayed
the derivative (versus the logarithm of the scale r) of the
logarithm of the sixth order structure function for both
transverse and longitudinal velocity increments for the air
jet at Rλ = 695. We observe that an horizontal shift of a
factor 2.2 makes the data to almost coincide. On the sole
basis of these structure functions, it seems thus difficult to
invoke a difference between the intermittency exponents.
Concerning the scale dependence of Ci cumulants, we no-
tice that the determination of large scale l0⊥ for transverse
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Fig. 9. ζ6 = D[ln(〈|δu(r)|6〉)] versus r measured in the air
jet (Rλ = 695); (◦) longitudinal increments, (4) transverse
increments and (+) same transverse increments shifted of a
factor 2.2
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Fig. 10. Behaviour of C2 versus C1 in the longitudinal and in
the transversal increments cases for the jet.

increments gives systematically half the value obtained
from the longitudinal ones, in accordance with the shift
invoked above.

In Figure 10, we compare the behaviour of C2 ver-
sus C1 for transverse and longitudinal data for the air jet
experiment for two different Reynolds numbers. We first
observe a clear difference between the two types of incre-
ments. Besides, the merging of transverse increments data
for different Reynolds numbers is less obvious than for the
longitudinal case. Indeed, a systematic tendency appears
in all our results where transverse C2 values for a given
C1 decreases and tends to the longitudinal one when Rλ
increases. Let us note that, for a given flow, an increas-
ing of Rλ always improves isotropy (estimated with the
ratio u′/v′). This could be connected with the remarks of
L’vov et al. [32]. They argued that, within homogeneity
and isotropy, a difference in scaling between longitudinal
and transverse velocity moments can only appear for order
larger than 4. Our approach is first concerned with abso-
lute values of velocity differences, and second to the limit
of vanishing order p. In this context, if we assume that
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for a given order the intermittency exponents of the lon-
gitudinal and transversal increments are the same, then
the difference of scaling observed in Figure 10 could be
attributed to a lack of homogeneity or/and isotropy.

4 Intermittency and Reynolds number

In order to test the robustness of the β estimator, the data
cumulant analysis has been applied in several physical and
numerical experiments for a large range of Reynolds num-
bers (see Tabs. 1 and 2).

4.1 Universal β behaviour with Rλ:

Figure 11 gives the β exponent values measured with the
longitudinal velocity increment. As already observed in
the previous paper [15], physical data, shown in Figure 11,
roughly agree with the second prediction of the variational
model (7) on about two decades of Rλ. Actually, experi-
mental points merge on a weakly bent curve, however in
first order, 1/β behaves linearly with Rλ. The error bars
take into account a possible uncertainty in determining l0
and η. We thus varied the fitting range in Figure 8, keep-
ing its length constant in logarithmic coordinates, within
±20% for l0. These data of β versus Rλ also agree with a
power law behaviour (not shown in this paper). However,
in our knowledge, there is no argument to justify such a
dependence.

Note that in [12] a similar figure presents the evolution
of an exponent β versus Rλ. It corresponded to a power
law C2 = k2(r/l0)−β (without additional constant) which
fitted a narrower range of the measured dependence of C2

versus r. The result of the present paper is that, within the
cautions quoted above, and with the additional constant,
the power law can reasonably fit most of the range (Fig. 8),
which yields us to redefine the β estimator (7) in this
scope.

In Figure 11 are also plotted numerical data, in partic-
ular, it is interesting to compare the DNS of [18] with the
grid turbulent flow which has nearly the same Reynolds
number. They yield very close values of the β exponent.

In Figure 12, transverse velocity increments have been
added (both numerical and physical experiments). All the
data collapse on the same universal curve which means
that β is not dependent on the velocity increment type.
That result is not so surprising, since our analysis is based
on the absolute value of δur, avoiding any skewness effect.
Nevertheless, this result is important since there is no the-
oretical prediction on it.

As a whole, the best logarithmic fit of experimental
data is:

1
β
' 1

0.28
log
(
Rλ
28

)
·

All these results show the intrinsic ability of the β esti-
mator to quantify the global effect of intermittency along
scales, and to generalize its universal behaviour with Rλ
to all increment data types.
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Fig. 11. Behaviour of 1/β versus Rλ in the longitudinal in-
crements case; physical experiments (◦); DNS (•); logarithmic
fit (dotted line). The errors bars are obtained by varying the
fitting range of scales.
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Fig. 12. Behaviour of 1/β versus Rλ both for transverse and
longitudinal increments; longitudinal increment: physical ex-
periments (◦), DNS (•); transverse increment: physical exper-
iments (�), DNS (�).

4.2 Cascade multiplier dependence with Rλ:

The β exponent permits to characterize how the cumu-
lants Ci(r) evolved along the scales. Their absolute values
or their ratio depend on the behaviour of the ki prefactors
versus the Reynolds number as defined in (6). There is no
theoretical prediction for these factor values. Figure 13a
(resp. 13b) clearly shows, in average, a linear dependence
of k1 (resp. k2) with 1/β. In Figure 13b, the dispersion of
data corresponds to the flow type dependence revealed in
Figure 5.

Experimental data fits lead to:

k1 =
µ1

β
with, µ1 = −0.22± 0.04

k2 =
µ2

β
µ2 = 0.016± 0.003.
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In the infinite Reynolds limit, β tends to zero, thus (6)
becomes:

Cir=ki

((
l0
r

)β
−1

)
'β ki ln

(
l0
r

)
⇒ C1r ' µ1 ln

(
l0
r

)
C2r ' µ2 ln (l0r) ·

According to the Kolmogorov theory [1], we expect a µ1

value close to − 1
3 . The observed difference is due to the

fact that DC1 depends on the scale.

Otherwise, the µ2 value seems reasonable, according to
the Refined Similarity Hypothesis: εr ∼ (δu(r))/r3. Since
〈(ln(εr))2〉 ' 9〈(ln(δu))2〉, (where µ is the intermittency
constant of εr), we can expect that µ ' 9µ2. From this
point of view, µ2 = 0.016 is not in contradiction with the
well accepted µ ' 0.18− 0.25.

Therefore, Figures 12 and 13a show that each cumu-
lant Ci(r) only depends on one constant µi and the sta-
tistical estimator β(Rλ).

5 Asymmetry of the longitudinal increments

The whole analysis above only refers to the symmetric
part of velocity increments pdf, whereas, as it is well
known, the dissipation power ε is related to the asym-
metric part of the longitudinal velocity increments pdf:

〈δu3
l 〉 ' −

4
5
εr.

However, it is a common belief that the signed and abso-
lute odd moments of δul behave in the same way. In par-
ticular, it is generally assumed that the ratio 〈δu3〉/〈|δu3|〉
has a universal value in the inertial range. This is to be
expected, indeed, in the frame of the Kolmogorov Refined
Similarity Hypothesis.

The high statistics we use (about 104 integral times)
ensure good convergence for the signed third moment. We
thus have studied the behaviour of what can be called the
asymmetry:

A(r) = − 〈δu
3〉

〈|δu3|〉
versus the scale for different Reynolds numbers (Fig. 14).
The ratio A(r) is indeed a better measure of the asymme-
try of the pdf than the skewness:

S(r) = − 〈δu3〉
〈δu2〉3/2

as the latter is sensitive to the phenomenon of intermit-
tency, i.e. the change of shape of the pdf.

Before to look at the results, let us point that a con-
stant value of A(r) in the inertial range would ensure to
comfortably answer a dilemma in the literature. On the
one hand, many authors pretend that the gradient skew-
ness Sη, which is the small scale limit of S(r), grows as
the Reynolds number increases. On the other hand, it is
often claimed that the one dimensional velocity spectrum
E(k) has a universal shape at the viscous cut off that is
η/ν2E(k) is a universal function of kη. The latter result
implies a universal value for Sη and thus is contradictory
to the former one.

However, from Section 3, we know that:

Sη
A(η)

=
〈|δu3|〉
〈δu2〉3/2 (η)

=
〈|δu3|〉
〈δu2〉3/2 (l0) exp(

3
2
C2(η))

in the log-normal approximation. The first function is uni-
versal, being controlled by the Gaussian nature of velocity
fluctuations at large scale. The second factor grows when
Rλ increases, for a given experiment. Thus, either A(η) is
universal and Sη goes up with Rλ, or Sη is a constant and
A(η) goes down.

Figures 14a, b give the result for A(r). This ratio is not
strictly constant, but it never uniformly decreases when
going down the scales. Thus, the above conclusion is valid
as A(r) cannot asymptotically be larger than 1.
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different flows: (a) grid (×), helium jet (◦, �, 4), Modane
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At first sight, one could conclude that A(r) has a uni-
versal value at large scale except for the helium exper-
iment. However we had better look at each experiment
independently at a thiner level. Then, as it can be seen
already in Figure 14a for the helium experiments, and in
Figure 14b for the air jet experiments, a systematic de-
crease of A when Reynolds grows is visible.

While we are confident in the systematic character of
this result, it affords for cautions verification. Indeed, first,
it allows for a constant value of the gradient skewness Sη,
as the decrease of A(r) is of the good order of magnitude.
Secondly, if extrapolated to very large Reynolds (rather
unphysical on terrestrial grounds, but conceptually im-
portant) it opens the possibility that A(r) goes to zero
as Reynolds goes to infinity. In the inertial range A(r) is,
within a 4/5 factor, equal to the ratio of ε to 〈|δu|3〉/r. It
would mean that the dissipation goes to zero when com-
pared to the only inertial quantity to which we can. In this
way, turbulence would be “non dissipative” in the infinite
Reynolds limit.
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Fig. 15. Behaviour of DC1(r) versus C1(r) obtained in DNS
(Rλ = 63(•), Rλ = 168(4)) and in a 1283 LES (solid line).

6 An application to the LES

The previous sections strongly suggest that β behaves
monotonously with Rλ, whatever the type of flow or the
numerical simulation is. Therefore, it is possible to esti-
mate the Reynolds number based on the Taylor micro-
scale from the knowledge of β. This can be useful, partic-
ularly in the case of Large Eddy Simulation. The use of a
subgrid modelling prevents from knowing the effective dis-
sipative scale, and therefore from calculating Rλ. Indeed,
in most of LES, the Reynolds number is often estimated
by a large scale property of which the Reynolds number
is a priori known ([33] and references therein).

Figures 8 clearly show that the slope β is well defined
until the largest scale l0, which means that the part of the
largest inertial scales only can be sufficient to estimate it.
This property is especially interesting at small and mod-
erate Reynolds numbers, and we tried to use it on a LES
performed by Métais and Lesieur [34] on a 1283 periodic
grid with a subgrid modelling based on the Smagorinsky’s
model [35]. Transverse velocity increments have been cal-
culated at ten different separations respectively equal to
2, 3, 4, 5, 6, 8, 10, 12, 14 and 16 times the mesh size
∆xLES. Each pdf has been obtained with 12 × 106 data,
and the previous cumulant analysis yields ten C1 val-
ues. In this case, the reference scale l0 has been found
equal to 6∆xLES. The slope βLES has been determined
with ranges of different extents included in the range 2-6
meshes (equivalent to 0.4l0 - ∆xLES in Fig. 15), leading
to the value βLES = 1.1 with an error bar of 0.1. There-
fore, the universal curve β(Rλ) leads to an approximative
Taylor Reynolds number of RλLES ' 50 (see Fig. 12). It
is, a priori, surprising to notice that this LES leads to
a RλLES value smaller than this obtained with the 1283

DNS (RλDNS = 63).
In order to understand this result, we have to compare

the range of scales which are actually simulated in each
case. In the DNS, by definition, all the scales of the flow
are calculated and so, the energy injection scale is chosen
to be of the order of the box size, as it is sketched in
Figure 16.
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On the opposite, the objective of the LES is to study
the large scale structures so that this injection scale is
chosen one order below the box size, and the mesh size
is assumed to be in the inertial range, but the ratio
∆xLES/ηLES is unknown.

In the present case, the numerical data base of the LES
and DNS leads to:

l0LES

∆xLES
' 6

l0DNS

ηDNS
' 50 with

∆xDNS

ηDNS
' 1.44.

Assuming that the ratio ∆xLES/ηLES only depends on the
subgrid scale modelling and not on the Reynolds number,
we can estimate it by using the experimental relation dis-
played in Figure 6 (l0/η ' R3/2

λ /8). It yields:

∆xLES ' 6.4 ηLES.

A way to test the efficiency of this subgrid modelling is
to consider the LES with the same Lbox/l0 ratio as in the
DNS and to compare their Reynolds numbers. In terms of
Reynolds number, by using again Rλ ∼ η2/3, the above
relation involves a ratio of

RλLES

RλDNS
' 2.7.

This example suggests that usual LES with a Smagorin-
sky’s model are able to reach more than double the Taylor
Reynolds number of DNS with the same numerical grid
size.

7 Concluding remarks

The evolution of velocity increments distributions, which
we rely, as most of the authors do, to a multiplicative cas-
cade, can be described as the repetitive action of a prop-
agator. The rate of progression of the cascade along the
scales, or the shape of the propagator which ensures it,
are two different problems. The experimental data anal-
ysed, in this paper, with the cumulant technic show that
the former exhibits a universality which seems not to be
present in the latter. Indeed, universality can be under-
stood in three different ways: along the scales, versus the

Reynolds number and for different experimental setups.
On one hand, the shape of the propagator, as character-
ized by the C2/C1 ratio, exhibits differences between ex-
perimental setups, even for a same type of flow (Fig. 5a).
However, this ratio is constant within an experimental
setup, along the scales and versus the Reynolds number
(Fig. 5b). On the other hand, the progression of the cas-
cade, measured, for instance, by the C1 cumulant, is not
regular as assumed in the scale invariant models. That
is, the same step in the cascade does not mean the same
ratio in scales all along the range (Figs. 8a, b). The corre-
sponding “acceleration” can be measured by the global β
estimator. However, the relation between β and Reynolds
does not depend on the experimental setup, nor on the
type of flow, and is verified as well with Direct Numerical
Simulation (Fig. 12). It allowed us to estimate the Rλ of
a Large Eddy Simulation.

Another important result of the paper is the perti-
nence of the scale where the cascade begins (l0 scale). Its
determination is easier and sharper than for the integral
scale. The relation between l0/η and Rλ is universal for
longitudinal increments: l0/η ' R

3/2
λ (Fig. 6). Transverse

increment defines its own l0 scale different from the longi-
tudinal one. However, when plotted versus their respective
r/l0, the longitudinal and transverse structure functions
nearly coincide, raising doubts about an eventual differ-
ence between their asymptotic ζp exponents (Fig. 9).
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Appendix

In a recent work [17], the evolution of δu statistics is seen
as a Markovaian process along the scales. The authors first
verify the validity of the Chapman-Kolmogorov relation:

P (δu3|δu1) =
∫
P (δu3|δu2)P (δu2|δu1)dδu2, (9)

where P (u1|u2) is the probability density of u1 for a given
u2. The δui:

δui = u
(
x+

ri
2

)
− u

(
x− ri

2

)
,

are longitudinal velocity differences at scale ri (r1 > r2 >
r3) for the same point x. The authors find good experi-
mental agreement between the two sides of (9). As they
remark, this is not a proof, but a good indication for a
Markovian behaviour which is also an essential assump-
tion behind (1).

Pushing further, they show that the probability den-
sity function of δu is verifying a Fokker-Planck equation
where the time is replaced by the logarithm of the scale.
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In this appendix, we simply want to signal the connec-
tion with what preceeds (which is natural for specialists
of random walk).

Limiting ourselves to log-normal GrL, its Laplace
transform is:

G̃rL(p) =
∫

epxGrL(x)dx = exp
{
n(r)(C1p+ C2

p2

2
)
}

∂G̃rL
∂ ln(r)

= (DC1p+ DC2
p2

2
)G̃rL,

which is equivalent to the following equation in the direct
(lnα) space:

∂GrL
∂ ln(r)

= DC1
∂GrL
∂ lnα

+
DC2

2
∂2GrL

(∂ lnα)2
· (10)

Using (1) and the fact that GrL contains all the depen-
dence in the scale:

∂Pr(δu)
∂ ln(r)

=
∫

∂GrL
∂ ln(r)

(lnα)
1
α
PL(

δu

α
)d lnα. (11)

Substituting the expression (10) for ∂G/∂ ln(r) and inte-
grating in parts gives a Fokker-Planck equation for Pr:

∂Pr
∂ ln(r)

= − ∂

∂δu
(D1Pr) +

∂2

(∂δu)2
(D2Pr),

where:

D1(δu) = (DC1 +
DC2

2
)δu; D2(δu) =

DC2

2
δu2.

The results of reference [17] are indeed coherent with
these dependencies within uncertainties, the main differ-
ence being an additional constant in D2, which could be
attributed to a noise.

Note that in equation (9) and in [17] the various δui
correspond to the same central point x. The knowledge
of the correspondence between δu0 at various scales is
fundamental for the direct experimental determination of
D1(δu) and D2(δu). It would indeed further allow to derive
(1) by verifying that the kernel of the relation between Pr
and PL has the assumed form (a convolution in ln(δu)).
But, as far as we know, this correspondence could be dif-
ferent from the one assumed in [17].
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